• Trang chủ
  • Học Toán 8
  • Học Toán 9
  • Đề thi vào 10
    • Đề thi toán vào 10
  • Lịch sử
    • Nhân vật lịch sử
    • Chiến tranh Việt Nam
    • Lịch sử triều nhà Nguyễn
    • Lịch sử triều nhà Hậu Lê
    • Lịch sử triều nhà Mạc
  • Thiết bị
  • Bán hàng
  • Liên hệ

Phạm Quang Tấn

Làm việc tại Công ty TNHH EURODODO

You are here: Home / Học Toán 9 / Làm sao để giải bài toán bằng cách lập phương trình

Làm sao để giải bài toán bằng cách lập phương trình

Tháng 9, 2022 bởi tác giả Phạm Quang Tấn Leave a Comment

Nội dung chính

Toggle
  • Các bước giải bài toán bằng cách lập phương trình
  • Các dạng bài toán giải bằng cách lập phương trình
    • 1. Giải bài toán về năng suất, phần trăm
    • 2. Giải Bài toán về lập phương trình liên quan đến cấu tạo số
    • 3. Giải bài toán lập phương trình về dạng chuyển động của vật
    • 4. Giải bài toán bằng cách lập phương trình có nội dung hình học
    • 5.  Giải bài toán về công việc chung và riêng

Các bước giải bài toán bằng cách lập phương trình

Giải bài toán bằng cách lập phương trình là dạng toán làm khó nhiều học sinh, vì vậy bài này chúng tôi sẽ hướng dẫn chi tiết làm sao để giải được bài toán dạng lập phương trình, hay còn gọi là cách giải bài toán bằng cách lập phương trình.

Trước đó chúng ta đã tìm hiểu về loạt bài thuộc Chuyên đề rút gọn biểu thức và bắt đầu từ bài này chúng ta sẽ tiếp tục chuyên đề thứ 2.

Sau khi hoàn thành việc rèn luyện kiến thức của hai chuyên đề đầu tiên các bạn có thể bắt tay vào thử sức với bộ đề thi vào 10 môn toán mới nhất với các câu hỏi liên quan kiến thức đã học. Các bạn cũng có thể tìm xem trước tài liệu PDF file full các chuyên đề ôn thi vào 10 môn toán

Trước tiên chúng ta sẽ tìm hiểu các bước giải bài toán bằng cách lập phương trình, cụ thể là có 3 bước sau:

Bước 1: Lập phương trình

  • Chọn ẩn và đặt điều kiện thích hợp cho ẩn số. Ở bước này các bạn cần xác định đại lượng cần tìm, đại lượng đề cho sẵn, mối quan hệ giữa các đại lượng đó để đặt ẩn số cho phù hợp.
  • Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết
  • Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2: Giải phương trình đã lập ở bước 1.

  • Các bạn có thể dùng thủ thuật casio để biết trước kết quả hoặc để tra kết quả đã giải được nhằm chắc chắn hơn phần giải phương trình của mình.

Bước 3: Đối chiếu các nghiệm đã giải của phương trình đã lập ở bước 2 với điều kiện ở bước 1 sau đó loại các nghiệm không phù hợp điều kiện rồi đi đến kết luận.

Kết thúc 3 bước đó thì chúng ta đã trả lời được câu hỏi làm sao để giải rồi. Bây giờ bạn cũng có thể truy cập 1001 câu hỏi giải bài toán bằng cách lập phương trình để thử thử mình nhé. Hoặc nếu cần cụ thể hơn các dạng bài tập thường gặp thì nán lại đọc hết phần bên dưới.

Nhưng như vậy thôi chỉ là lý thuyết, bởi phương pháp để giải bài toán bằng cách lập phương trình ở trên chỉ là tổng quan. Nó thật sự chưa thiết thực cho các bạn trong việc giải các bài toán dạng này. Vì vậy sau đây chúng ta sẽ đi tìm hiểu chi tiết cách giải của từng dạng toán lập phương trình.

  1. Bài toán về năng suất, phần trăm
  2. Bài toán về cấu tạo số
  3. Bài toán về chuyển động
  4. Dạng giải bài toán bằng cách lập phương trình có nội dung hình học
  5. Bài toán về công việc chung và riêng

Các dạng bài toán giải bằng cách lập phương trình

Trong chuyên đề giải bài toán bằng cách lập phương trình thuộc khóa học ôn luyện thi vào 10 môn toán tương tác trực tiếp với giáo viên của chúng tôi có tất cả 7 dạng bài toán giải bằng cách lập phương trình. Ở bài viết này trên khuôn khổ cơ bản chúng tôi đề cập 5 dạng thường gặp dưới đây.

1. Giải bài toán về năng suất, phần trăm

Lý thuyết:

Tổng sản phẩm dự định làm = Số sản phẩm dự định làm trong 1 ngày (giờ) x Thời gian hoàn thành

Tổng sản phẩm thực tế làm = Số sản phẩm thực tế làm trong 1 ngày (giờ) x Thời gian hoàn thành

  • Nếu mỗi ngày thực tế làm nhiều hơn so với dự định K sản phẩm thì:

Số sản phẩm đã làm trong 1 ngày = Số sản phẩm dự định làm trong 1 ngày + K

  • Nếu thực tế làm được số sản phẩm nhiều hơn dự định m sản phẩm thì:

Tổng sản phẩm thực tế làm = Tổng sản phẩm dự định + m

Với toán phầm trăm ta cần chú ý:

  • a% của giá trị x là a%.x
  • Nếu tháng II vượt mức a% so với tháng 1 thì:

Số sản phẩm của tháng II = Số sản phẩm của tháng I + a%.(Số sản phẩm của tháng I)

2. Giải Bài toán về lập phương trình liên quan đến cấu tạo số

giải bài toán bằng cách lập phương trình
Giải bài toán bằng cách lập phương trình dạng cấu tạo số

3. Giải bài toán lập phương trình về dạng chuyển động của vật

Lý thuyết:

a, Chuyển động của một vật:

Dữ kiện để lập phương trình

  • Liên hệ giữa các đại lượng vận tốc.

  • Liên hệ giữa các đại lượng thời gian dự định và thời gian thực tế

    • Nếu đến đích sớm hơn dự định một khoảng thời gian a thì: tdự định – tthực tế = a

    • Nếu đến đích muộn hơn dự định một khoảng thời gian a thì: tthực tế – tdự định = a

  • Nếu đến đích đúng dự định thì tthực tế = tdự định

Liên hệ thời gian lúc đi và thời gian lúc về: Chẳng hạn biết thời gian đi ít hơn (hoặc nhiều hơn hoặc bằng) thời gian về, biết tổng thời gian cả đi lẫn về.

b, Chuyển động của hai vật cùng chiều:

  • Khi hai vật xuất phát cùng lúc từ A đi đến B

    • Nếu hai vật đến B cùng lúc thì thời gian đi của hai vật là như nhau

    • Nếu vật 1 đến B sớm hơn vật 2 một khoảng thời gian đen-ta t thì:

      • tvật 2 từ A đến B – tvật 1 từ A đến B = đen-ta t

  • Khi hai vật xuất phát từ A khác thời điểm và đi đến B. Nếu hai vật gặp nhau tại điểm C trên quãng đường AB thì:

    • Quãng đường hai vật đi được là như nhau và bằng AC

    • Biết vật 1 đi trước vật 2 một khoảng thời gian đen-ta t thì

      • tvật 1 từ A đến C – tvật 2 từ A đến C = đen-ta t

Chú ý: Nếu hai vật đến B cùng lúc và vật 1 xuất phát trước vật 2 một khoảng thời gian thì t vật 1 từ A đến B – t vật 2 từ A đến B = đenta t

c, Hai vật chuyển động ngược chiều:

  • Hai xe đi ngược chiều cùng lúc từ hai địa điểm A và B. Khi gặp nhau ở D thì
    • t xe 1 đi AD = t xe 2 đi BD và AD + BD = AB
  • Hai xe đi ngược chiều khác thời điểm (không cùng lúc):
  • Giả sử xe 1 đi từ A đến B, xe 2 đi từ B đến A và xe 1 xuất phát sớm hơn xe 2 một khoảng đen-ta t (h):
    • Khi xe xuất phát thì xe 1 đã đi được quãng đường AC = v1.đen-ta t và thời điểm xe 1 tới C cũng là thời điểm xe 2 xuất phát
    • Khi gặp nhau tại D thì: txe 1 đi CD = txe 2 đi BD; txe 1 đi AD = đen-ta t + txe 1 đi CD.

4. Giải bài toán bằng cách lập phương trình có nội dung hình học

Lý thuyết:

Công thức tính diện tích tam giác vuông bằng tích hai cạnh góc vuông chia 2.

Công thức tính diện tích hình chữ nhật bằng chiều dài nhân chiều rộng.

Công thức tính diện tích hình vuông bằng cạnh nhân cạnh.

Công thức tính chu vi hình tam giác bằng ba cạnh cộng lại

Công thức tính chu vi hình chữ nhật bằng 2.(chiều dài + chiều rộng)

Công thức tính chu vi hình vuông bằng cạnh nhân cạnh

5.  Giải bài toán về công việc chung và riêng

Lý thuyết:

Coi toàn bộ công việc là 1. Cả hai người (hai đội) làm chung thì a gờ xong công việc

Gọi thời gian người thứ nhất (đội 1) làm một mình xong công việc là x giờ, người thứ 2 (đội 2) làm một mình xong công việc là y giờ (x > a, y > a).

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn

Bài viết liên quan

Cách chứng minh 2 đường thẳng song song
Cách chứng minh 2 đường thẳng song song
Dạng bài tập tiếp tuyến cát tuyến đường tròn
114 Dạng bài tập tiếp tuyến cát tuyến đường tròn lớp 9
Bài tập ôn thi học kì 1 toán 9
2000 Bài tập ôn thi học kì 1 toán 9 (đại số và hình học)
Đề cương ôn toán 9 học kì 1
Đề cương toán 9 học kì 1 đại số hình học bài tập 100 trang
Hệ thức lượng trong tam giác vuông
Hệ thức lượng trong tam giác vuông (lý thuyết và bài tập)
Bộ đề thi học kì 1 toán 9
20 Đề thi học kì 1 toán 9 có đáp án mới nhất
Lý thuyết bài tập Hàm số bậc nhất
1001 Bài tập hàm số bậc nhất lớp 9 ôn thi vào 10
Dạng bài toán chuyển động của vật
Dạng bài toán chuyển động của vật kèm bài tập có đáp án
Đề cương ôn thi vào 10 môn toán lớp 9
Đề cương ôn thi vào 10 môn toán (Tài liệu mới)
dấu hiệu nhận biết tứ giác nội tiếp
7 Dấu hiệu nhận biết tứ giác nội tiếp đường tròn toán 9
dạng bài toán chứng minh tứ giác nội tiếp
1001 Dạng bài toán chứng minh tứ giác nội tiếp đường tròn
tứ giác nội tiếp
Cách chứng minh tứ giác nội tiếp đường tròn đạt điểm tối đa

Filed Under: Học Toán 9 Tagged With: giải bài toán bằng cách lập phương trình

Thành Cổ Quảng Trị

Thành Cổ Quảng Trị | Chốn linh thiêng hồn người chẳng ngủ yên

Chính sử truyện Nhà Mạc Tập 4 - Hậu vận và Dư âm Mạc triều

Chính sử truyện Nhà Mạc Tập 4 – Hậu vận và Dư âm Mạc triều

Chính sử truyện Nhà Mạc Tập 3 - Cung đấu đến suy tàn

Chính sử truyện Nhà Mạc Tập 3 – Cung đấu đến suy tàn

Chính sử truyện Nhà Mạc Tập 2 - Mạc triều lập quốc

Chính sử truyện Nhà Mạc Tập 2 – Mạc triều lập quốc

Chính sử truyện nhà Mạc tập 1 – Mạc Đăng Dung dựng nghiệp

Chính sử truyện nhà Mạc tập 1 – Mạc Đăng Dung dựng nghiệp

hành trình mở đất về cõi Phương Nam của chúa Nguyễn

Tráng ca hành trình mở đất về cõi phương Nam của chúa Nguyễn

Nguyễn Ánh Gia Long

Nguyễn Ánh: 25 năm bôn ba và hành trình phục quốc đầy cam go

Văn tả mẹ hay nhất

20 bài văn tả về mẹ hay nhất theo 20 lối viết khác nhau

Kinh thành 13 vua triều Nguyễn

LỊCH SỬ 13 VUA TRIỀU NGUYỄN

Các trường hợp miễn kiểm tra hiệu suất năng lượng motor

Các trường hợp miễn kiểm tra hiệu suất năng lượng motor

Các đời chúa Nguyễn

Các đời chúa Nguyễn

Đại lý thiết bị wika chính hãng

Đại lý thiết bị WIKA chính hãng tại Việt Nam là công ty nào

About Phạm Quang Tấn

Đến từ Quảng Trị, sống tại miền nam.

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Primary Sidebar

Danh mục sản phẩm

  • ASA-RT
  • Brands khác
  • DEUBLIN
  • DYNISCO
  • KROMSCHRODER
  • MARZOCCHI
  • WIKA

Bài viết mới

  • Thành Cổ Quảng Trị | Chốn linh thiêng hồn người chẳng ngủ yên
  • Chính sử truyện Nhà Mạc Tập 4 – Hậu vận và Dư âm Mạc triều
  • Chính sử truyện Nhà Mạc Tập 3 – Cung đấu đến suy tàn
  • Chính sử truyện Nhà Mạc Tập 2 – Mạc triều lập quốc
  • Chính sử truyện nhà Mạc tập 1 – Mạc Đăng Dung dựng nghiệp

Menu chính

  • Trang chủ
  • Học Toán 8
  • Học Toán 9
  • Đề thi vào 10
    • Đề thi toán vào 10
  • Lịch sử
    • Nhân vật lịch sử
    • Chiến tranh Việt Nam
    • Lịch sử triều nhà Nguyễn
    • Lịch sử triều nhà Hậu Lê
    • Lịch sử triều nhà Mạc
  • Thiết bị
  • Bán hàng
  • Liên hệ
Rạch Gầm xoài mút

Trận Rạch Gầm Xoài Mút: ly kỳ một đêm quét sạch quân Xiêm

Chính sử truyện Nhà Mạc Tập 4 - Hậu vận và Dư âm Mạc triều

Chính sử truyện Nhà Mạc Tập 4 – Hậu vận và Dư âm Mạc triều

dấu hiệu nhận biết hình thoi

5 Dấu hiệu nhận biết hình thoi và tính chất hình thoi

Bài tập ôn thi học kì 1 toán 9

2000 Bài tập ôn thi học kì 1 toán 9 (đại số và hình học)

Công chúa Ngọc Hân

Công chúa Ngọc Hân với người “áo vải cờ đào”

Đại lý thiết bị wika chính hãng

Đại lý thiết bị WIKA chính hãng tại Việt Nam là công ty nào

võ vương Nguyễn Phúc Khoát

Nguyễn Phúc Khoát vị chúa đặt nền móng Đàng Trong suy tàn

Đại lý Cảm biến Datalogic

Đại Lý Cảm Biến Datalogic Tại Việt Nam

Mạc Đăng Dung Mạc Thái Tổ

Mạc Đăng Dung (Mạc Thái Tổ) từ một ngư dân tới ngôi vua

kinh đô vạn lại yên trường thọ xuân thanh hóa

Vạn Lại – Yên Trường kinh đô của sự nghiệp Trung hưng nhà Lê

quá trình mở rộng lãnh thổ Việt Nam về phía nam

Tóm tắt quá trình mở rộng lãnh thổ Việt Nam về phía nam

Tài liệu giáo dục địa phương Quảng Trị

Tài liệu giáo dục địa phương tỉnh Quảng Trị

Đề cương ôn toán 9 học kì 1

Đề cương toán 9 học kì 1 đại số hình học bài tập 100 trang

Chợ Tạ Uyên

Chợ Tạ Uyên ở đường Tạ Uyên quận 5 TPHCM có bán gì

chợ sãi do chúa Sãi Nguyễn Phúc Nguyên lập

Chúa Sãi Nguyễn Phúc Nguyên và giai thoại “Ta không nhận sắc”

✔️ Hơn 2 triệu lượt đọc/tải
✔️ Hơn 300 đánh giá hữu ích
✔️ Kho tài liệu miễn phí

Footer

 

Học vấn là cái kho, và lao động là chìa khóa để mở cái kho ấy. Ngoài những cái lợi khác, lao động còn có cái lợi làm cho ngày ngắn lại và đời dài ra.

Trang chủ

Liên hệ

Liên kết

  • Eurododo.com
  • Pqt.edu.vn
  • Comment Lịch sử
  • Thiết bị công nghiệp

Danh mục