Phương pháp giải và bài tập dạng toán chuyển động của vật
Dạng toán chuyển động của vật thuộc chuyên đề giải bài toán bằng cách lập phương trình hệ phương trình. Có 3 dạng bài toán chuyển động của vật là:
- Chuyển động của một vật,
- Chuyển động của hai vật cùng chiều
- Chuyển động của hai vật ngược chiều
Ở bài viết này pqt.edu.vn sẽ trình bày cụ thể cả ba dạng trên bao gồm lý thuyết phương pháp giải và bài tập điển hình có đáp án.
Lưu ý: Phần lý thuyết chúng ta gọi chung là vật, tuy nhiên bài toán thực tế có thể là xe, vật, người di chuyển.
Xem thêm: Đề cương ôn thi vào 10 môn toán (Tài liệu mới mà bạn nào cũng cần có)
1. Dạng toán chuyển động của một vật
a. Dạng chuyển động của một vật từ A đến B
- Lý thuyết
- Bài tập chuyển động của một vật từ A đến B có đáp án
Bài tập 1: Một ô tô đi từ A và dự định đến B lúc 12 giờ trưa. Nếu xe chạy với vận tốc 35 km/h thì sẽ đến B chậm 2 giờ so với dự định. Nếu xe chạy với vận tốc 50 km/h thì sẽ đến B sớm 1giờ so với dự định. Tính độ dài quãng đường AB và thời điểm xuất phát của ô tô tại A?
Hướng dẫn:
Gọi thời điểm xuất phát của ô tô tại A là x (giờ) (0 < x <12)
=> Thời gian dự định đi từ A đến B là 12 – x (giờ)
Độ dài quãng đường AB là y (km) (y > 0)
S | V | t | |
Dự định | Y | 12 – x | |
Thực tế 1 | Y | 35 | y/35 |
Thực tế 2 | y | 50 | y/50 |
Phương trình: y/35 – (12 – x) = 2 (1)
(12 – x) – y/50 = 1 (2)
Bài tập 2: Một xe ô tô dự định đi từ A đến B trong một thời gian nhất định. Nếu xe chạy mỗi giờ nhanh hơn 10 km thì đến nơi sớm hơn dự định 3 giờ, nếu xe chạy chậm lại mỗi giờ 10 km thì đến nơi chậm nhất 5 giờ. Tính vận tốc của xe lúc đầu, thời gian dự định và chiều dài quãng đường AB?
Hướng dẫn
S | V | t | |
Dự định | x | y | x/y |
Thực tế 1 | x | y + 10 | x/(y + 10) |
Thực tế 2 | x | y – 10 | x/(y – 10) |
Phương trình :
x/y – x/(y+10) = 3
x/(y+10) – x/y = 5
Bài tập 3: Một người đi xe máy từ A đến B cách nhau 120 km với vận tốc dự định trước. Sau khi được 1/3 quãng đường AB người đó tăng vận tốc thêm 10 km/h trên quãng đường còn lại. Tìm vận tốc dự định và thời gian xe lăn bánh trên đường, biết rằng người đó đến B sớm hơn dự định 24 phút.
Hướng dẫn
Đổi 24 phút = 2/5 (giờ)
S | V | t | |
Dự định | 120 | x | 120/x |
Thực tế 1 | 120/3 = 40 | x | 40/x |
Thực tế 2 | 120 – 40 = 80 | x + 10 | 80/(x+10) |
Thời gian xe lăn bánh là: 40/x + 80/(x + 10)
Phương trình: 120/x – [40/x + 80/(x + 10)] = 2/5
- Bài tập rèn luyện chuyển động của một vật không nghỉ
Bài tập 1: Một ô tô dự định đi từ tỉnh A đến tỉnh B với vận tốc 50km/h. Sau khi đi được 2/3 quãng đường với vận tốc đó, vì đường khó đi nên người lái xe phải giảm vận tốc mỗi giờ 10km trên quãng đường còn lại. Do đó ô tô đến tỉnh B chậm hơn 30 phút so với dự định. Tính quãng đường AB.
Bài tập 2: Một ô tô đi từ A đến B với một vận tốc xác định và trong một thời gian đã định. Nếu vận tốc ô tô giảm 10 km/h thì thời gian tăng 45 phút. Nếu vận tốc ô tô tăng 10 km/ h thì thời gian giảm 30 phút. Tính vận tốc và thời gian dự định đi của ô tô.
Bài tập 3: Một chiếc ca nô dự định đi từ A đến B trong một thời gian dự định, nếu vận tốc ca nô tăng 3 km/h thì đến B sớm hơn 2 giờ, nếu vận tốc ca nô giảm 3 km/h thì đến B chậm hơn 3 giờ. Tính chiều dài khúc sông AB và thời gian dự định đi từ A đến B?
b. Dạng chuyển động của một vật từ A đến B, nghỉ ở B (hoặc không), rồi từ B về A.
- Lý thuyết
- Bài tập chuyển động của một vật có thời gian nghỉ hoặc không có đáp án
Bài tập 1: Quãng đường AB gồm một đoạn lên dốc dài 4 km và một đoạn xuống dốc dài 5 km. Một người đi xe đạp từ A đến B hết 40 phút và đi từ B đến A hết 41 phút (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc, lúc xuống dốc?
Hướng dẫn
Đổi 40 phút = 2/3 (giờ) ; 41 phút = 41/60 (giờ).
S | V | t | ||
Lúc đi | Lên dốc | 4 km | x | 4/x |
Xuống dốc | 5 km | y | 5/y | |
Lúc về | Lên dốc | 5 km | x | 5/x |
Xuống dốc | 4 km | y | 4/y |
Phương trình:
4/x + 5/y = 2/3
5/x + 4/y = 41/60
Bài tập 2: Quãng đường từ A đến B dài 90 km. Một người đi xe máy từ A đến B. Khi đến B, người đó nghỉ 30 phút rồi quay trở về A với vận tốc lớn hơn vận tốc lúc đi là 9 km/h. Thời gian kể từ lúc bắt đầu đi từ A đến lúc trở về đến A là 5 giờ. Tính vận tốc xe máy lúc đi từ A đến B.
Hướng dẫn:
Đổi 30 phút = 1/2 (giờ)
S | V | t | |
Lúc đi | 90 | x | 90/x |
Nghỉ tại B | 1/2 | ||
Lúc về | 90 | x + 9 | 90/(x + 9) |
Phương trình: 90/x + 90/(x+9) + 1/2 = 5
- Bài tập rèn luyện
Bài tập 1: Một ca nô chạy trên sông trong 7 giờ, xuôi dòng 108 Km và ngược dòng 63 Km. Một lần khác, ca nô đó cũng chạy trong 7 giờ, xuôi dòng 81 Km và ngược dòng 84 Km . Tính vận tốc dòng nước chảy và vận tốc riêng ( thực ) của ca nô?
Bài tập 2: Một canô xuôi một khúc sông dài 90 km rồi ngược về 36 km. Biết thời gian xuôi dòng sông nhiều hơn thời gian ngược dòng là 2 giờ và vận tốc khi xuôi dòng hơn vận tốc khi ngược dòng là 6 km/h. Hỏi vận tốc canô lúc xuôi và lúc ngược dòng.
Bài tập 3. Một ca nô ngược dòng từ bến A đến bến B với vận tốc 20 km/h, sau đó lại xuôi từ bến B trở về bến A. Thời gian ca nô ngược dòng từ A đến B nhiều hơn thời gian ca nô xuôi dòng từ B trở về A là 2 giờ 40 phút. Tính khoảng cách giữa hai bến A và B. Biết vận tốc dòng nước là 5 km/h, vận tốc riêng của ca nô lúc xuôi dòng và lúc ngược dòng bằng nhau.
Bài tập 4: Một canô xuôi từ bến sông A đến bến sông B với vận tốc 30 km/h, sau đó lại ngược từ B trở về A. Thời gian xuôi ít hơn thời gian đi ngược 1 giờ 20 phút. Tính khoảng cách giữa hai bến A và B. Biết rằng vận tốc dòng nước là 5 km/h và vận tốc riêng của canô lúc xuôi và lúc ngược bằng nhau.
Bài tập 5: Một ca nô xuôi dòng trên một khúc sông từ bến A đến bến B dài 80 km, sau đó lại ngược dòng đến địa điểm C cách bến B 72 km. Thời gian ca nô xuôi dòng ít hơn thời gian ngược dòng là 15 phút. Tính vận tốc riêng của ca nô biết vận tốc của dòng nước là 4km/h.
2. Dạng bài toán hai vật chuyển động cùng chiều
a. Hai vật chuyển động cùng lúc từ A đến B
- Lý thuyết
Nếu hai vật đến B cùng lúc thì thời gian hai vật đi từ A đến B là như nhau.
* Nếu vật 1 đến B sớm hơn vật 2 một khoảng thời gian ∆t thì:
t (vật 2 từ A đến B) – t (vật 1 từ A đến B) = ∆t
Lập bảng dữ liệu, gọi ẩn:
S | V | t | |
Vật 1 | |||
Vật 2 |
- Bài tập hai vật chuyển động cùng chiều
Bài tập 1: Một xe khách và một xe Du lịch khởi hành cùng một lúc từ Hà Nội đi Hải Phòng Xe Du lịch có vận tốc lớn hơn vận tốc xe khách là 20 km/h do đó đến Hải phòng trước xe Khách là 25 phút. Tính vận tốc mỗi xe. Biết khoảng cách giữa Hà Nội và Hải phòng là 100 km.
Bài tập 2: Một Ô tô khách và một Ô tô tải cùng xuất phát từ địa điểm A đi đến địa điểm B đường dài 180 km do vận tốc của Ô tô khách lớn hơn Ô tô tải 10 km/h nên Ô tô khách đến B trước Ô tô tải 36 phút. Tính vận tốc của mỗi Ô tô. Biết rằng trong quá trình đi từ A đến B vận tốc của mỗi Ô tô không đổi.
Bài tập 3. Hai ô tô cùng khởi hành cùng một lúc từ A đến B cách nhau 150 km. Biết vận tốc ô tô thứ nhất lớn hơn vận tốc ô tô thứ hai là 10 km/h và ô tô thứ nhất đến B trước ô tô thứ hai là 30 phút. Tính vận tốc của mỗi ô tô.
Bài tập 4: Hai ô tô khởi hành cùng một lúc trên quãng đường từ A đến B dài 120 km. Mỗi giờ ô tô thứ nhất chạy nhanh hơn ô tô thứ hai 10 km nên đến b trước ô tô thứ hai là 2/5 giờ. Tính vận tốc của mỗi xe.
Bài tập 5: Một ôtô và xe máy xuất phát cùng một lúc, đi từ địa điểm A đến địa điểm B cách nhau 180 km . Vận tốc của ôtô lớn hơn vận tốc của xe máy là 10 km/h , nên ôtô đã đến B trước xe máy 36 phút. Tính vận tốc của mỗi xe..
Bài tập 6: Hai người đi xe máy khởi hành cùng một lúc từ A đến B dài 75 km . Người thứ nhất mỗi giờ đi nhanh hơn người thứ hai 5 km/h nên đến B sớm hơn người thứ hai 10 phút. Tính vận tốc của mỗi người.
Bài tập 7: Một xe tải và một xe con cùng khởi hành từ tỉnh A đến tỉnh B. Xe tải với vận tốc 30km/h, xe con đi với vận tốc 45km/h. Sau khi đi được 3/4 quãng đường AB, xe con tăng vận tốc thêm 5km/h trên quãng đường còn lại. Tính quãng đường AB, biết rằng xe con đến tỉnh B sớm hơn xe tải 2 giờ 20 phút.
Bài tập 8: Một ô tô và một xe máy cùng khởi hành từ A để đi đến B với vận tốc của mỗi xe không đổi trên toàn bộ quãng đường AB dài 120km. Do vận tốc của xe ô tô lớn hơn vận tốc của xe máy là 10km/h nên ô tô đến B sớm hơn xe máy 36 phút. Tính vận tốc mỗi xe?
Bài tập 9: Một xe tải và một xe con cùng khởi hành từ tỉnh A đến tỉnh B. Xe tải với vận tốc 40km/h, xe con đi với vận tốc 60km/h. Sau khi mỗi xe đi được nửa đường thì xe con nghỉ 40 phút rồi đi tiếp đến B; xe tải trên quãng đường còn lại đã tăng vận tốc thêm 10km/h nhưng vẫn đến B chậm hơn xe con nửa giờ. Tính quãng đường AB?
b. Hai vật (xe) xuất phát khác thời điểm từ A
- Lý thuyết
Lập bảng dữ liệu, gọi ẩn:
S | V | t | |
Xe 1 | |||
Xe 2 |
- Bài toán 2 xe di chuyển cùng chiều
Bài tập 1: Lúc 7 giờ một người đi xe máy khởi hành từ A với vận tốc 40 km/h. Sau đó, lúc 8 giờ 30 phút, một người khác cũng đi xe máy từ A đuổi theo với vận tốc 60km/h. Hỏi hai người gặp nhau lúc mấy giờ và điểm gặp nhau cách A bao nhiêu?
Hướng dẫn:
Đổi 8 giờ 30 phút = 17/2 (giờ)
Gọi thời điểm hai xe gặp nhau là x (giờ) (x > 17/2)
Khoảng thời gian người 1 đi từ A tới vị trí gặp nhau là x – 7 (giờ)
Khoảng thời gian người 2 đi từ A tới vị trí gặp nhau là x – 17/2 (giờ)
S | V | t | |
Người 1 | 40(x – 7) | 40 | x – 7 |
Người 2 | 60(x – 17/2) | 60 | x – 17/2 |
Phương trình: 40(x – 7) = 60(x – 17/2)
Bài tập 2. Một ô tô khởi hành từ A với vận tốc 50 km/h. Qua 1 giờ 15 phút ô tô thứ hai cũng khởi hành từ A đi cùng hướng với ô tô thứ nhất với vận tốc 40 km/h. Hỏi sau mấy giờ thì ô tô gặp nhau, điểm gặp nhau cách A bao nhiêu km?
Bài tập 3: Một chiếc xe tải đi từ tỉnh A đến B với vận tốc 40km/h. Sau đó 1giờ 30 phút, một chiếc xe con cũng khởi hành từ tỉnh A để đi đến tỉnh B với vận tốc 60km/h. Hai xe gặp nhau khi chúng đã đi được một nửa quãng đường AB. Tính quãng đường AB.
3. Dạng toán hai vật chuyển động ngược chiều nhau
- Lý thuyết
- Bài toán chuyển động hai vật ngược chiều
Bài tập 1: Đoạn đường AB dài 180 km . Cùng một lúc xe máy đi từ A và ô tô đi từ B, xe máy gặp ô tô tại C cách A 80 km. Nếu xe máy khởi hành sau 54 phút thì chúng gặp nhau tại D cách A là 60 km. Tính vận tốc của ô tô và xe máy ?
Bài tập 2: Một người đi xe đạp từ A đến B cách nhau 108 km. Cùng lúc đó một ô tô khởi hành từ B đến A với vận tốc hơn vận tốc xe đạp là 18 km/h. Sau khi hai xe gặp nhau xe đạp phải đi mất 4 giờ nữa mới tới B. Tính vận tốc của mỗi xe?
Bài tập 3: Một ca nô xuôi dòng từ A đến B cách nhau 100 km. Cùng lúc đó một bè nứa trôi tự do từ A đến B. Ca nô đến B thì quay lại A ngay, thời gian cả xuôi dòng và ngược dòng hết 15 giờ. Trên đường ca nô ngược về A thì gặp bè nứa tại một điểm cách A là 50 km. Tìm vận tốc riêng của ca nô và vận tốc của dòng nước?
Bài tập 4: Đoạn đường AB dài 180 km . Cùng một lúc xe máy đi từ A và ô tô đi từ B xe máy gặp ô tô tại C cách A 80 km. Nếu xe máy khởi hành sau 54 phút thì chúng gặp nhau tại D cách A là 60 km. Tính vận tốc của ô tô và xe máy ?
Bài tập 5: Hai ô tô A và B khởi hành cùng một lúc từ hai tỉnh, cách nhau 150 km, đi ngược chiều và gặp nhau sau 2 giờ. Tìm vận tốc của mỗi ô tô, biết rằng nếu vận tốc của ô tô A tăng thêm 5km/h và vận tốc của ô tô B giảm đi 5km/h thì vận tốc của ô tô A bằng 2 lần vận tốc của ô tô B.
Bài tập 6: Một người đi xe đạp và một người đi xe máy cùng khởi hành từ A đến B dài 57 km. Người đi xe máy đến B nghỉ lại giờ rồi quay trở lại A và gặp người đi xe đạp cách B là 24km. Tính vận tốc mỗi người, biết vận tốc xe máy hơn vận tốc xe đạp là 36 km/h.
Bài tập 7: Hai người ở hai địa điểm A và B cách nhau 3,6 km, khởi hành cùng một lúc ngược chiều nhau và gặp nhau ở một điểm cách A là 2 km. Nếu cả hai cùng giữ nguyên vận tốc nhưng người đi chậm hơn xuất phát trước người kia 6 phút thì họ sẽ gặp nhau ở chính giữa quãng đường. Tính vận tốc của mỗi người.
Bài tập 8. Một xe lửa đi từ Huế ra Hà Nội. Sau đó 1 giờ 40 phút, một xe lửa khác đi từ Hà Nội vào Huế với vận tốc lớn hơn vận tốc của xe lửa thứ nhất là 5 km/h. Hai xe gặp nhau tại một ga cách Hà Nội 300 km. Tìm vận tốc của mỗi xe, giả thiết rằng quãng đường sắt Huế – Hà Nội dài 645km.
Trả lời